

Four^Q on FPGA:

New Hardware Speed Records for Elliptic Curve Cryptography over Large Prime Characteristic Fields

K. Järvinen¹, A. Miele², R. Azarderakhsh³, and P. Longa⁴

- ¹ Aalto University
- ² Intel Corporation
- ³ Rochester Institute of Technology
- ⁴ Microsoft Research

Contact: kimmo.jarvinen@aalto.fi, plonga@microsoft.com

CHES 2016, Santa Barbara, CA, USA, August 17-19, 2016

Introduction

FourQ:

- FourQ is a high-performance elliptic curve with very good SW performance (2–3× faster than Curve25519)
- FourQ has been shown to offer the fastest scalar multiplications on a wide range of software platforms:
 - On several 32-bit ARM microarchitectures (SAC 2016)
 - On several 64-bit Intel/AMD processors, low and high-end (ASIACRYPT 2015)
- FourQ employs four-dimensional scalar decompositions, requires extensive precomputation, complex control, etc.
 Not clear how well it suits for HW implementation

Introduction

Contributions:

- The first FPGA-based implementations of FourQ
- Four \mathbb{Q} offers 2–2.5× faster performance than Curve 25519
- Speed-area tradeoff is the primary optimization goal
- Protected against timing and SPA attacks
- We present three implementations: single-core, multi-core, and Montgomery ladder variant

Four Costello, Longa, ASIACRYPT'15

$$\mathcal{E}/\mathbb{F}_{p^2}:-x^2+y^2=1+dx^2y^2$$

- ► Twisted Edwards curve with #*E*(𝔽_{p²}) = 392 · ξ where ξ is a 246-bit prime
- Defined over \mathbb{F}_{p^2} with the Mersenne prime $p = 2^{127} 1$
- Complete addition formulas over extended twisted Edwards coordinates (Hisil et al. ASIACRYPT'08)

Four Costello, Longa, ASIACRYPT'15

$$\mathcal{E}/\mathbb{F}_{p^2}:-x^2+y^2=1+dx^2y^2$$

- ► Twisted Edwards curve with $\#\mathcal{E}(\mathbb{F}_{p^2}) = 392 \cdot \xi$ where ξ is a 246-bit prime
- Defined over \mathbb{F}_{p^2} with the Mersenne prime $p = 2^{127} 1$
- Complete addition formulas over extended twisted Edwards coordinates (Hisil et al. ASIACRYPT'08)
- \blacktriangleright Two efficiently-computable endomorphisms ψ and ϕ
- ► Four-dimensional decomposition for the 256-bit scalar m with (a₁, a₂, a₃, a₄) such that a_i ∈ [0, 2⁶⁴):

$$[m]P = [a_1]P + [a_2]\psi(P) + [a_3]\phi(P) + [a_4]\psi(\phi(P))$$

Microsoft

Resea

Input: Point P, integer $m \in [0, 2^{256})$ Output: [m]P

- 1 Decompose and recode m
- 2 Precompute lookup table T
- 3 $Q \leftarrow T[v_{64}]$
- **4** for i = 63 to 0 do
- $\begin{array}{c|c} \mathbf{5} & Q \leftarrow [2]Q \\ \mathbf{6} & Q \leftarrow Q + m_i T[v_i] \end{array}$

Four() on FPGA CHES 2016

Input: Point P, integer $m \in [0, 2^{256})$ Output: [m]P

- 1 Decompose and recode m
- 2 Precompute lookup table T
- 3 $Q \leftarrow T[v_{64}]$
- **4** for i = 63 to 0 do
- $\begin{array}{c|c} \mathbf{5} & Q \leftarrow [2]Q \\ \mathbf{6} & Q \leftarrow Q + m_i T[v_i] \end{array}$

Scalar decompose and recode

- Decompose to a multi-scalar (a_1, a_2, a_3, a_4)
- Sign-aligned so that $a_1[j] \in \{\pm 1\}$ and $a_i[j] \in \{0, a_1[j]\}$ for $2 \le j \le 4$
- Recode to signs $m_i \in \{-1, 1\}$ and values $v_i \in [0, 7]$ (point index)

Input: Point P, integer $m \in [0, 2^{256})$ Output: [m]P

- 1 Decompose and recode m
- 2 Precompute lookup table T
- 3 $Q \leftarrow T[v_{64}]$
- **4** for i = 63 to 0 do
- $\begin{array}{c|c} \mathbf{5} & Q \leftarrow [2]Q \\ \mathbf{6} & Q \leftarrow Q + m_i T[v_i] \end{array}$

Precomputation

- Precompute 8 points: T[u] = P + $[u_0]\phi(P) + [u_1]\psi(P) + [u_2]\psi(\phi(P))$ for $u = (u_2, u_1, u_0) \in [0, 7]$
- Store them with 5 coordinates $(X+Y, Y-X, 2Z, 2dT, -2dT) \Rightarrow$ +T[u]: (X + Y, Y - X, 2Z, 2dT)-T[u]: (Y - X, X + Y, 2Z, -2dT)
- \triangleright 68M + 27S and several additions

Microsoft

Research

Input: Point P, integer $m \in [0, 2^{256})$ Output: [m]P

- 1 Decompose and recode m
- 2 Precompute lookup table T
- 3 $Q \leftarrow T[v_{64}]$
- **4** for i = 63 to 0 do
- $\begin{array}{c|c} \mathbf{5} & Q \leftarrow [2]Q \\ \mathbf{6} & Q \leftarrow Q + m_i T[v_i] \end{array}$

Main for-loop

- Fully regular and constant-time
- Only 64 double-and-adds
- Doubling: $(X, Y, Z, T_a, T_b) \leftarrow (X, Y, Z)$
- Addition:

$$\begin{array}{l} (X,Y,Z,T_a,T_b) \leftarrow \\ (X,Y,Z,T_a,T_b) \times \\ (X+Y,Y-X,2Z,2dT) \end{array}$$

Microsoft Research

General Architecture

Scalar Decomposition and Recoding Unit

- Decomposes and recodes the scalar
- Mainly multiplications with constants

Field Arithmetic Unit ("the core")

- Precomputation and the main for-loop
- Highly optimized for \mathbb{F}_p with the Mersenne prime

Scalar Unit

- Decomposition is computed with a truncated multiplier (mainly multiplications with constants)
- The main component is a 17×264-bit row multiplier built by using 11 DSPs
- Recoding is bit manipulations and 64-bit additions
- Outputs (m₀, v₀) first, scalar multiplication begins with (m₆₄, v₆₄)

 \Rightarrow Store in a LIFO buffer

 $R \cdot I \cdot T$

Research

Research

Field Arithmetic Unit: Datapath

Research

Field Arithmetic Unit: Datapath

Multiplier path

Field Arithmetic Unit: Datapath

Adder path

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

Research

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

FourQ on FPGA CHES 2016 10/17

1

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

2

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

3

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

4

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

5

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

6

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

7

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

8

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

9

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

10

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

11

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

12

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

13

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

14

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

15

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

16

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

17

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

18

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

19

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

20

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

21

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(1) 22

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(2) 23

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(3) 24

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(4) 25

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(5) 26

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(6) 27

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(7) 28

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(8) 29

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(9) 30

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(10) 31

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(11) 32

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(12) 33

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(13) 34

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(14) 35

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(15) 36

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(16) 37

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(17) 38

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$a \times b = (a_0, a_1) \times (b_0, b_1)$$

= $(a_0 \cdot b_0 - a_1 \cdot b_1, (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1)$

(18) 39

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(19) 40

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(20) 41

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(21) 42

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(1,22) 43

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(2,23) 44

3 multiplications, 2 additions and 3 subtractions in \mathbb{F}_p :

$$\begin{aligned} a \times b &= (a_0, a_1) \times (b_0, b_1) \\ &= (a_0 \cdot b_0 - a_1 \cdot b_1 , \ (a_0 + a_1) \cdot (b_0 + b_1) - a_0 \cdot b_0 - a_1 \cdot b_1) \end{aligned}$$

(3,24) 45

Latencies

Field operations

	in \mathbb{F}_p	in \mathbb{F}_{p^2}
Addition	6 (2) clocks	8 (4) clocks
Multiplication	20 (7) clocks	38/45 (31/21) clocks
Squaring	20 (7) clocks	28 (16) clocks
Inversion	2760 clocks	2817 clocks

In practice, almost all additions in parallel with multiplications

Four() on FPGA

Latencies

Field operations

	in \mathbb{F}_p	in \mathbb{F}_{p^2}
Addition	6 (2) clocks	8 (4) clocks
Multiplication	20 (7) clocks	38/45 (31/21) clocks
Squaring	20 (7) clocks	28 (16) clocks
Inversion	2760 clocks	2817 clocks

In practice, almost all additions in parallel with multiplications

Operations for scalar multiplication

Precomputation4185 clocksScalar decomposition and recoding1984 (0) clocksDouble-and-add (64 times)354 clocksAffine conversion2869 clocksScalar multiplication29739 clocks

Multi-Core Architecture

Single-Core Architecture

Research

Single-Core Architecture

Multi-Core Architecture (N = 11)

Multi-Core Architecture (N = 11)

Performance Results on Zynq-7020

VHDL for Xilinx Zynq-7020 with Vivado 2015.4

- One scalar multiplication takes 29,739 clock cycles
- Single-core: 190 MHz \Rightarrow 157 μ s or 6,389 ops
- Multi-core: 175 MHz (\times 11) \Rightarrow 170 μ s or 64,730 ops
- Point validation (124 clocks), cofactor killing (1760 clocks)

FourQ on FPGA CHES 2016 14/17

Performance Results on Zynq-7020

VHDL for Xilinx Zynq-7020 with Vivado 2015.4

- One scalar multiplication takes 29,739 clock cycles
- Single-core: 190 MHz \Rightarrow 157 μ s or 6,389 ops
- Multi-core: 175 MHz (\times 11) \Rightarrow 170 μ s or 64,730 ops
- Point validation (124 clocks), cofactor killing (1760 clocks)

Variant using Montgomery ladder

- No scalar unit (saves 11 DSPs), no precomputations, simpler control, etc.
- 522 slices, 7 BRAMs, 16 DSP
- ▶ 58967 clocks at 190 MHz \Rightarrow 310 μ s or 3,222 ops

FourQ on FPGA CHES 2016 14/17

Comparison

- Many implementations for ECC over prime fields
- Comparison is extremely difficult because of different FPGAs, different optimization goals, etc.
- Best match with Sasdrich & Güneysu's Curve25519 design, both on Xilinx Zynq-7020
- See the paper for further comparisons

FourQ on FPGA CHES 2016 15/17

Four vs. Curve 25519

Single-Core Architectures

 $R \cdot I \cdot T$ Research

FourQ on FPGA CHES 2016 16/17

Four vs. Curve 25519

Montgomery Ladder

Microsoft⁻

Research

 $R \cdot I \cdot T$

FourQ on FPGA CHES 2016 16/17

Four vs. Curve 25519

Multi-Core Architectures (N = 11)

Microsoft⁻

Research

 $R \cdot I \cdot T$

FourQ on FPGA CHES 2016 16/17

Conclusions

- We showed that FourQ is very efficient also on FPGAs
- FourQ is significantly more efficient in terms of speed-area ratio than the closest counterpart

FourQ on FPGA CHES 2016 17/17

Conclusions

- We showed that FourQ is very efficient also on FPGAs
- FourQ is significantly more efficient in terms of speed-area ratio than the closest counterpart

Future Work

- Low-latency implementation
- Better side-channel protection:
 e.g., against DPA and advanced horizontal attacks

FourQ on FPGA CHES 2016 17/17

Conclusions

- We showed that FourQ is very efficient also on FPGAs
- FourQ is significantly more efficient in terms of speed-area ratio than the closest counterpart

Future Work

- Low-latency implementation
- Better side-channel protection:
 e.g., against DPA and advanced horizontal attacks

Thank you! Questions?

FourQ on FPGA CHES 2016 17/17